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Quantum Logics and Instruments

Sylvia PulmannovaÂ1

Received July 4, 1997

In a combined quantum logic and convexity approach, an abstract notion of an
instrument (state transformer) is introduced to describe quantum measurements.
Some important classes of instruments (first kind, repeatable, ideal, LuÈ ders) and
relations among them are investigated.

INTRODUCTION

In the quantum logic approach, a generalization of classical probability

theory is considered where the set of all random events of a quantum experi-

ment is modeled by a quantum logic, i.e., an orthomodular s -lattice, replacing

the s -field of subsets in the classical Kolmogorovian approach. In Pulman-
novaÂ(1993, 1994, 1995), a theory of quantum measurements is formulated

in analogy with the traditional Hilbert space approach (Busch et al., 1991,

1996). The coupled physical system consisting of a measured object and a

measuring apparatus is described in terms of a Boolean power of a quantum

logic and a Boolean algebra. In this frame, the notion of a measuring instru-

ment (see, e.g., Davies, 1976) can be formulated in which all information
about the measurement is contained. It turns out that for a more detailed

development of the measurement theory, quantum logics with some special

properties are needed. For example, in PulmannovaÂ(1994, 1995) so-called

u-spectral logics are considered. Some authors (e.g., Abbati and ManiaÁ ,

1984; RuÈ ttimann, 1985) use a combination of quantum logic and convexity
approaches. Following them, in this paper we consider quantum logics (ortho-

modular s -lattices) which appear in the noncommutative spectral theory

investigated by Alfsen and Shultz (1976). In this frame, we introduce an

abstract definition of a measuring instrument and study instruments with some
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special properties important from the point of view of physical experiments.

Relations between u-spectral logics and the Alfsen and Shultz approach are

studied in PulmannovaÂ(n.d.).

1. BASIC DEFINITIONS AND RESULTS

Assume that X, Y are two positively generated ordered vector spaces.

We say that X, Y are in separating order duality with respect to a bilinear

form (1) if for x P X, y P Y,

x $ 0 Û ^ x, y & $ 0 for all y $ 0

y $ 0 Û ^ x, y & $ 0 for all x $ 0 (1.1)

In what follows, we shall consider an order-unit space (A, e) and a base-

norm space (V, K ) (for definitions see, e.g., Alfsen, 1971, Ch. II, §1), and

we assume that they are in separating order and norm duality, i.e., we assume

together with (1.1) the following requirement, in which a P A, r P V:

|a| # 1 Û | ^ a, r & | # 1 whenever | r | # 1

| r | # 1 Û | ^ a, r & | # 1 whenever |a| # 1 (1.2)

According to Alfsen and Shultz (1976, §7.1), an order-unit space (A, e) and
a base-norm space (V, K ) are in spectral duality if (1.1) and (1.2) are satisfied,

A is pointwise monotone s -complete, and if for every a P A and l P R
there exists a projective face2 F which is bicompatible with a,3 and satisfies

a # l on F, a . l on F #.

Let (A, e) be an order-unit space and (V, K ) a base-norm space in spectral
duality. Recall that an element a P A is a projective unit if it is an extreme

point of the interval [0, e]. Under the above suppositions, the set 8 of all

projective units forms an orthomodular s -complete lattice.

A family {e l } l P R of projective units is said to be a spectral family if

for l , m P R

(i) e l # e m when l # m ,

(ii) e l 5 Ù m . l e m ,

(iii) Ù l P Re l 5 0, Ú l P Re l 5 e.

A spectral family {e l } l P R has a compact support if there exist a , b P R, a
# b , such that e l 5 0 for all l # a and e l 5 e for all l $ b .

A spectral family {e l } l P R is said to be a spectral resolution for a given

element a P A if for every l P R,

2 A face F of K is projective if F 5 (imP*
F ) ù K for some P-projection PF on A.

3 i.e., compatible will all b P A which are compatible with a, where F and b are compatible
if PF b # b.
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r P K, ^ e l , r & 5 1 Þ ^ a, r & # l

r P K, ^ e l , r & 5 0 Þ ^ a, r & . l

If (A, e) and (V, K ) are in spectral duality, there is a 1±1 correspondence

between elements a P A and spectral families {e l } of compact supports,
given by

a 5 # l de l

where the right side is a norm-convergent Riemann±Stiltjes integral. More-

over, a functional calculus can be introduced: If a is an element of A with

spectral resolution {e l } and if f is a bounded Borel function of real variable,
then there exists a unique element b of A such that for all r P K,

^ b, r & 5 # f ( l ) d ^ e l , r &

In particular, for every Borel set E the element pE of A defined by

^ pE, r & 5 # E

d ^ e l , r & for r P K

is a projective unit which belongs to the bicommutant of a. Moreover, the

mapping E j pe from the Borel sets into 8 satisfies

(i) PR 5 e,
(ii) pE 5 S npEn for any disjoint sequence {En} with ø n En 5 E.

In other words, the set 8 of projective units can be interpreted as a
quantum logic, the set K can be identified with a rich4 family of states on

8, and the set A with the set of bounded observables on 8. The expectation

of an observable a P A in a state r P K is then r (a) 5 ^ a, r & .

2. INSTRUMENTS

From the separating order and norm duality of V and A it follows that

if T: V ª V is a weakly continuous mapping, then for any fixed a P A, r
j ^ a, T( r ) & is a weakly continuous linear functional on V, hence there is a

unique element T*(a) of A such that ^ a, T( r ) & 5 ^ T*(a), r & , " r P V, and T*:A
ª A is a weakly continuous linear transformation of A. If, moreover, T is
positive, i.e., T (V +) , V +, then T* is positive as well. In what follows,

4 A family M of states on a quantum logic L is rich if a ñ b implies that $ m P M, m(a) 5 1,
m (b) , 1. In our setting, this condition holds due to Lemma 2.16(v) in Alfsen and Shultz (1976).



166 PulmannovaÂ

L + (V, V ) and L + (A, A ) denote the spaces of all weakly continuous positive

linear transformations of V and A, respectively.

Definition 2.1. Let (V, K ) and (A, e) be in spectral duality and ( V , 6)

be a measurable space. An instrument (or state transformer)5 is a mapping

I: 6 ª L +(V, V ) such that:

(Ii) ^ e, I( V )( r ) & 5 ^ e, r & " r P V,
(Iii) I ( ø `

n 5 1 En)( r ) 5 ( `
n 5 1 I (En)( r ) " r P V, where the sum converges

in the weak sense for any disjoint sequence (En) , 6.

Definition 2.2. Let (V, K ) and (A, e) be in spectral duality and ( V , 6)

be a measurable space. A dual instrument (dual state transformer) is a

mapping I*: 6 ª L +(A, A ) such that:

(DIi) I*( V )(e) 5 e,
(DIii) I*( ø n

n
5 1 En)(a) 5 ( `

n 5 1 I* (En)(a) " a P A, where the sum

converges in the weak sense for any disjoint sequence (En) , 6.

Theorem 2.3. To every instrument there corresponds a unique dual instru-

ment, and conversely, to every dual instrument there corresponds a unique
instrument.

Proof. (1) Let I be an instrument. For any fixed a P A and E P 6,

r j ^ a, I(E )( r ) & is a weakly continuous positive functional on V, therefore

there is a (unique) element I*(E )(a) in A such that

^ a, I (E )( r ) & 5 ^ I (E )*(a), r &

and I (E )*: A ª A is a weakly continuous linear transformation. By (Ii), ^ e,

r & 5 ^ e, I( V )( r ) & 5 ^ I ( V )*(e), r & " r P V, hence I ( V )*(e) 5 e. If {En} is

a disjoint sequence of elements of 6, by (Iii), for all r P V,

^ a, I 1 ø
`

n 5 1
En 2 ( r ) & 5 o

`

n 5 1

^ a, I (En)( r ) & " a P A

hence

^ I 1 ø
`

n 5 1
En 2 *(a), r & 5 o

`

n 5 1
^ I (En)*(a), r & " r P V

and hence I ( ø `
n 5 1 En)*(a) 5 ( `

n 5 1I (En)*(a) for every a P A. Putting I*(E )

5 I (E )* for E P 6, we obtain the desired dual instrument.

5 In Busch et al. (1996) the notion state transformer replaces the commonly used notion
instrument for the reason that it is a mathematical notion rather than a real instrument.



Quantum Logics and Instruments 167

(2) Using the above arguments the other way round, we obtain that to

every dual instrument there is a unique instrument. n

Semiobservables on quantum logics have been investigated in Pulman-

novaÂ(1980) as analogues of POV-measures (i.e., positive-operator-valued

measures) in the Hilbert space approach (see, e.g., Berberian, 1966). They
generalize the notion of an observable (a PV-measure, i.e., projection-valued

measure in the Hilbert space approach).

Definition 2.4. Let (V, K ) and (A, e) be in spectral duality and ( V , 6)
a measurable space. A semiobservable is a mapping X: 6 ª %, where we

put % 5 [0, e] , A, such that:

(i) X ( V ) 5 e,
(ii) X ( ø `

n 5 1 En) 5 ( `
n 5 1 X (En) for any sequence {En} of disjoint sets

from 6, where the right-side converges in weak sense.

Semiobservables are sometimes called unsharp observables, while ordi-

nary observables, whose ranges are in the logic 8, are called sharp observ-

ables. Notice that the interval % 5 [0, e] endowed with the partial binary

operation % defined by f % g is defined iff f 1 g # e and in this case f %
g 5 f 1 g becomes an interval effect algebra (Bennett and Foulis, 1996).
We have the following characterization of elements of 8 in %.

Lemma 2.5. For x P %, the following statements are equivalent:

(i) x P 8, i.e., x is an extreme point in [0,e].

(ii) x 2 5 x.
(iii) The spectrum of x is contained in the set {0,1}.

(iv) x Ù (e 2 x) 5 0.

(v) x Ú (e 2 x) 5 e.

Proof. (i) Þ (ii) Þ (iii) follows from the proof of Proposition 9.7 in

Alfsen and Shultz (1976). (iii) Þ (i): Assume that x 5 a y 1 (1 2 a ) z with
y, z P 21(L). Clearly, m (x) 5 0, 1 iff m ( y) 5 m (z) 5 0, 1, respectively.

From this we get x {1} 5 y {1} Ù z {1}, x {0} 5 y {0} Ù z {0}. Taking into

account that by (iii), x {0} 5 x {1}8 ( 5 e 2 x{1}), we have

x{0} 5 y{0} Ù z{0} # y{0} # y{0} Ú z{0} # ( y{1} Ù z{1})8

5 x{1}8 5 x{0}

hence y {0} 5 z {0}, i.e., y 5 z. This means that x is an extreme point. The

equivalence (ii) Û (iv) has been proved in Greechie et al. (1995), and (iv)

Û (v) follows by duality. n
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It turns out that with every instrument I (and hence with every dual

instrument I*) there is associated a semiobservable X which is defined by

X (E ) 5 I*(E )(e), E P 6 (2.1)

An instrument I associated with a semiobservable X is called X-compatible.
To every instrument, its associated semiobservable is uniquely defined, but

there may be several instruments compatible with a given semiobservable.

Similarly as in the traditional Hilbert space approach (Lahti et al., 1991),

some important classes of instruments can be considered. The notions of c-

ideal and d-ideal instruments were introduced in PulmannovaÂ(1994, 1995).

Before introducing our classification, we need the following definition. We
recall that for a state m on a quantum logic L and b P L, m(b) Þ 0, a function

pm (a | b): L ª [0,1] satisfying

(i) pm (a | b) is a state on L and pm (b | b) 5 1;

(ii) a P L, aCb Þ pm(a | b) 5 m(a Ù b)/m (b)

where a | b means that a, b are compatible, is called a conditional state (with

respect to m and b). We say that L admits conditional states with respect to
a set of states S if for any m P S and b P L with m (b) Þ 0 there is a

conditional state pm( ? | b).

Projection lattices of von Neumann algebras with no I2 factor as direct

summand are well-known examples of logics with conditional states with

respect to the set of all completely additive states. More generally, if (A, e)

and (V, K ) are in spectral duality, and (V, K ) is a GL space and (A, e) its
dual GM space, then the corresponding quantum logic 8 admits conditional

states with respect to the set K. For the proof of the latter statement see

Edwards and RuÈ ttimann (1990).

Definition 2.6. Let (A, e) and (V, K ) be in order and norm duality, and

( V , 6) a measurable space. An instrument I: 6 ª L +(V (M ), V (M )) is called

(i) repeatable if, for all E, F P 6 and r P K,

^ e, I (E )I (F )( r ) & 5 ^ e, I (E ù F )( r ) &

(ii) first kind if, for the associated semiobservable X,

^ X (E ), r & ) 5 ^ X (E ), I ( V )( r ) &

(iii) ideal if

y P C(X ), ^ y, r & 5 1 Þ ^ y, I ( V )( r ) & 5 1

where C (X ) denotes the commutant of the semiobservable X, i.e., the set of

all y P % such that yCX(E ) for all E P 6.
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Assume that X is a discrete (sharp) observable with the spectrum { v i}i ,

X ({ v i}) 5 bi. An instrument I compatible with X is

(iv) d-ideal if

^ bi , r & 5 1 « I ({ v i })( r ) 5 r , r P K, " i

(v) c-ideal if

a P C(X ) ù % « ^ a, I ({ v i })( r ) & 5 ^ bi Ù a, r & " r P K, " i

(vi) LuÈ ders on a logic 8 with conditional states if

^ a, I ({ v i })( r ) & 5 ^ bi , r & p r (a | bi ) " r P K, " i

The same arguments as in PulmannovaÂ(1994) can be used to prove that

repeatability condition (i) is equivalent to

^ e, I (E )I (E c)( r ) & 5 0 (2.2)

and condition (ii) can be rewritten as follows:

^ e, I (E )I (E c)( r ) & 5 ^ e, I (E c)I (E )( r ) & (2.3)

for all E P 6 and all r P K.
We note that the ideality condition (iii) was chosen to represent a kind

of minimal disturbance of the measured system caused by a measurement.

Condition (iii) is equivalent to

a P C(X ) ù 8, ^ a, r & 5 1 Þ ^ a, I ( V )( r ) & 5 1 (2.4)

Indeed, for any y P %, P{1}( y) is the unique element of 8 (an analogue of

a range projection in von Neumann algebras) such that ^ y, r & 5 1 if and only

if ^ a, r & 5 1 ( r P K ).

A repeatable instrument is always first kind, indeed,

^ X (E ), r & 5 ^ e, I (E )( r ) &

5 ^ e, I ( V )I (E )( r ) & 5 ^ e, I (E )I ( V )( r ) &

5 ^ I *E (e), I ( V )( r ) & 5 ^ X (E ), I ( V )( r ) &

The converse need not hold; in general, a first kind instrument need not

be repeatable. An illustrative example has been introduced in Busch et al.
(1991, 1996) as follows. Let a simple POV measure X be defined on the

two-point value set {1, 2} with X {i} 5 Ai. Now 0 # Ai # I and A2 5 I 2 A1.
Any X-compatible instrument is generated by any two state transformations w i

(i 5 1, 2) with the property w i (m)(1) 5 m (Ai), or tr[ w i T ] 5 tr[TAi] in terms

of the density operators corresponding to the states m. Since A1A2 5 A2A1,

it follows that tr[ w 1 w 2T ] 5 tr[ w 2 w 1T ] for any density operator T, so that this
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measurement is of the first kind. For example, w i T 5 A 1/2
i TA1/2

i , i 5 1, 2,

are such. But such an instrument is repeatable if and only if A i are projection

operators, i.e., X is an ordinary observable (a PV-measure). It turns out that
the notions of first kind instrument and repeatable instrument coincide in the

context of ordinary observables; see Busch et al. (1991) for the Hilbert

space approach and PulmannovaÂ(1994) for a class of measurements on

quantum logics.

Theorem 2.7. A first kind instrument which is compatible with a sharp

observable is repeatable.

Proof. Let I be a first kind instrument compatible with an observable
X. In terms of the dual instrument I*, the first kind property can be expressed as

I*( V )(X (E )) 5 X (E ) (2.5)

for all E P 6, or equivalently,

I*(E )(X (E c)) 5 I*(E c)(X (E )) (2.6)

for all E P 6. Making use of (2.5) and the additivity and positivity of I*,

one obtains

I*( V )(X (E )) 5 I*(E )(X (E )) 1 I*(E c)(X (E )) 5 X (E )

and the same holds for X (E ) replaced by X (E c). Using (2.6), one then has

I*(E )(X (E c)) , X (E ) and I*(E )(X (E c)) # X (E c) (2.7)

for all E P 6. Since X (E ) and X (E c) are sharp elements of %, by Lemma

2.5(iv) these inequalities imply that

I*(E )(X (E c)) 5 0 (2.8)

for all E P 6, which is the equivalent repeatability condition (2.2). n

An instrument I compatible with a semiobservable X will be called

range preserving if I* (E )X (F ) belongs to the range of X for every E,F P
6. An element a of % is called regular if a Ü 1±2 e, a à 1±2 e. A semiobservable

is regular if its range consists only of regular elements of %. We obtain the

following statement.

Proposition 2.8. A first kind instrument compatible with a regular semi-

observable is repeatable if and only if it is range-preserving.

Proof. Arguing in the same way as in the proof of Theorem 2.7, we

arrive at (2.7). Now taking into account that I*(E )(X (E c)) belongs to the

range of X and regularity of X implies that there is no nonzero element in

its range satisfying inequalities (2.7), we obtain (2.8). n
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Proposition 2.9. An instrument I is ideal iff

a P C(X ) ù 8 Þ I*( V )(a) 5 a (2.9)

Proof. By (2.4), ideality of I is equivalent to

a P C(X ) ù 8, ^ a, r & 5 1 Þ ^ I*( V )(a), r & 5 1

Since the spectrum of I* ( V )(a) # I*( V )(e) 5 e is contained in [0, 1], we
have ^ I*( V )(a), r & 5 1 if and only if ^ P{1} (I*( V )(a)), r & 5 1 ( r P K ). Since

a Ú a8 5 a 1 a8 5 e, we get P{1}((I*( V )(a8)) 5 P{0},(I*( V )(a)) and

e 5 a Ú a8 # P{1}(I*( V )(a)) Ú P{0}(I*( V )(a))

hence the spectrum of I*( V )(a) is contained in {0, 1}, i.e., it belongs to 8.
From a # I*( V )(a), and a8 # I*( V )(a8) 5 e 2 I*( V )(a) we obtain I*( V )(a)

5 a.
The converse statement is clear. n

Theorem 2.10. An ideal instrument which is compatible with a sharp

observable is repeatable.

Proof. By Proposition 2.9, for every E P 6 we have I*( V )(X (E c)) 5
X (E c), hence I*(E )(X (E c) # X (E c). On the other hand, from X (E ) 5 I*(E )(e)

and e 5 X (E ) 1 X (E c) it follows that I*(E )(X (E c) # (X (E ). Since the

infimum of X (E ) and X (E c) 5 e 2 X (E ) in % is 0, we obtain I*(E )(X (E c))

5 0, which is the repeatability condition (2.8). n

Proposition 2.11. On any logic with conditional states, a LuÈ ders measure-
ment is d-ideal.

Proof. For a LuÈ ders instrument I,

^ bi , r & 5 1, aCbi Þ ^ a, I ({ v i})( r ) & 5 ^ bi , r & p r (a | bi )

5 ^ a Ù bi , r & 5 ^ a, r &

Since the conditional state p r ( ? | bi) is uniquely defined by its values on C (bi)

(where C (bi) 5 {a P L: aCbi}), we have

I ({ v i})( r ) 5 ^ bi , r & p r ( ? | bi ) 5 r

whenever ^ bi , r & 5 1. n

Proposition 2.12. A d-ideal measurement is ideal.

Proof. The d-ideality of I implies that for r P K, and every i, ^ bi , r &
5 1 Þ ^ I*({ v i})(bi), r & 5 1. Hence for every i, bi # I*({ v i})(bi), hence

for " r ,
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^ bi , r & # ^ P{1}(I*({ v i})(bi )), r &

# ^ I*({ v i })(bi ), r & # ^ I*( V )(bi ), r &

Summing over i and taking into account that Ú bi 5 e, we derive that bi 5
I*( V )(bi) for every i.

Now let a P C (X ) ù 8. Then ^ a Ù bi , r & 5 1 implies ^ bi , r & 5 1,

hence by d-ideality, I ({ v i})( r ) 5 r , and hence ^ P{1}(I*({ v i})(a Ù bi)),

r & 5 1. This yields a Ù bi # P{1}(I*({ v i})(a Ù bi)). Therefore, for every
r P K,

^ a, r & 5 o
i

^ a Ù bi , r &

# o
i

^ P{1}(I*({ v i })(a Ù bi )), r &

# o
i

^ I*({ v i })(a Ù bi ), r &

# o
i

^ I*({ v i })(a), r &

# ^ I*( V )(a), r &

Similarly,

^ a8, r & # o
i

^ P{1}(I*({ v i })(a8 Ù bi )), r &

# o
i

^ I*({ v i})(a8), r & # ^ I*( V )(a8), r &

But then

1 5 ^ a, r & 1 ^ a8, r &

# o
i

^ I*({ v i})(a), r & 1 o
i

^ I*({ v i})(a8), r &

# ^ I*( V )(a), r & 1 ^ I*( V )(a8), r & 5 ^ I*( V )(1), r & # 1

which gives

^ a, r & 5 o
i

^ I*({ v i })(a) r & 5 ^ I*( V )(a), r &

and this yields the ideality condition (2.9). n

In the next theorem, the equivalence of (i), (ii), and (iv) in the traditional

approach has been proved in Lahti et al. (1991), and the equivalence of (i)

and (iv) on von Neumann algebras in Luczak (n.d.). In PulmannovaÂ(1995),
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there is a shortened proof of all the equalities for instruments on u-spectral

logics.

Theorem 2.13. On the logics 8 with conditional states and for instruments

compatible with sharp discrete observables, the following conditions are

equivalent:

(i) ideal
(ii) d-ideal

(iii) c-ideal

(iv) LuÈ ders

Proof. Equivalence of (iv) and (iii) can be proved as in PulmannovaÂ

(1994), (iv) Þ (ii) follows by Proposition 2.11, and (ii) Þ (i) follows by
Theorem 2.12. It remains to prove (i) Þ (iv). Let I be an ideal instrument

for a discrete observable X. By Proposition 2.9, I*( V )(a) 5 a for any a P
C (X ) ù m . By Theorem 2.10, I is repeatable. The repeatability condition

(2.8) gives

a 5 I*( V )(a) 5 o
j

I*({ v j })( ~
i

bi Ù a)

5 o
j

I*({ v j })(bj Ù a) 5 o
j

I*( V )(bj Ù a)

and, also by repeatability, I*({ v j})(a) 5 I*({ v j})(a Ù bj) 5 I* ( V ) (a Ù bj)

5 a Ù bj; the last equality follows by Proposition 2.9. Hence for any j and

a P C (X ) ù m ,

^ a, I ({ v j })( r ) & 5 ^ a Ù bj , I ({ v j})( r ) & 5 ^ a Ù bj , r & 5 p r (a | bj ) ^ bj , r &

Owing to the uniqueness of conditional states, the equality

^ a, I ({ v j})( r ) & 5 p r (a | bj ) ^ bj , r &

holds for all a P 8, hence I is LuÈ ders. n
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